How to access airport information?

The traffic library provides an airport database with facilitated access to runway information and apron layout.

class traffic.data.basic.airports.Airports(data=None)

An airport is accessible via its ICAO or IATA code. In case of doubt, use the search method.

The representation of an airport is based on its geographical footprint. Contours are fetched from OpenStreetMap (you need an Internet connection the first time you call it) and put in cache.

A database of major world airports is available as:

>>> from traffic.data import airports

Airports information can be accessed with attributes:

>>> airports["EHAM"].latlon  
(52.3086, 4.7639)
>>> airports["EHAM"].iata
'AMS'
>>> airports["EHAM"].name
'Amsterdam Airport Schiphol'
__getitem__(name)

Any airport can be accessed by the bracket notation.

Parameters:

name (str) – the IATA or ICAO code of the airport

Return type:

Airport

>>> from traffic.data import airports
>>> airports["EHAM"]
Airport(icao='EHAM', iata='AMS', name='Amsterdam Airport Schiphol', country='Netherlands', latitude=52.308601, longitude=4.76389, altitude=-11)
extent(extent, buffer=0.5)

Selects the subset of data inside the given extent.

Parameters:
  • extent (str | ShapelyMixin | tuple[float, float, float, float]) –

    The parameter extent may be passed as:

    • a string to query OSM Nominatim service;

    • the result of an OSM Nominatim query (ShapelyMixin);

    • any kind of shape (ShapelyMixin, including Airspace);

    • extent in the order: (west, east, south, north)

  • buffer (float) – As the extent of a given shape may be a little too strict to catch elements we may expect when we look into an area, the buffer parameter (by default, 0.5 degree) helps enlarging the area of interest.

Return type:

Optional[Self]

This works with databases like Airways, Airports or Navaids.

>>> from traffic.data import airways
>>> airways.extent(eurofirs['LFBB'])  
  route    id   navaid   latitude    longitude
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
  A25      6    GODAN    47.64       -1.96
  A25      7    TMA28    47.61       -1.935
  A25      8    NTS      47.16       -1.613
  A25      9    TIRAV    46.6        -1.391
  A25      10   LUSON    46.5        -1.351
  A25      11   OLERO    45.97       -1.15
  A25      12   MAREN    45.73       -1.062
  A25      13   ROYAN    45.67       -1.037
  A25      14   BMC      44.83       -0.7211
  A25      15   SAU      44.68       -0.1529
 ... (703 more lines)
>>> from traffic.data import airports
>>> airports.extent("Bornholm")  
 name                 country   icao      iata   latitude   longitude
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
 Bodilsker Airstrip   Denmark   DK-0027   nan    55.06      15.05
 Bornholm Airport     Denmark   EKRN      RNN    55.06      14.76
 Ro Airport           Denmark   EKRR      nan    55.21      14.88
>>> from traffic.data import navaids
>>> navaids['ZUE']
Navaid('ZUE', type='NDB', latitude=30.9, longitude=20.06833333, altitude=0.0, description='ZUEITINA NDB', frequency='369.0kHz')
>>> navaids.extent('Switzerland')['ZUE']
Navaid('ZUE', type='VOR', latitude=47.59216667, longitude=8.81766667, altitude=1730.0, description='ZURICH EAST VOR-DME', frequency='110.05MHz')
search(name)
Parameters:

name (str) – refers to the IATA or ICAO code, or part of the country name, city name of full name of the airport.

Return type:

Airports

>>> from traffic.data import airports
>>> airports.query('type == "large_airport"').search('Tokyo')  
  name                                 country   icao   iata   latitude   longitude
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
  Narita International Airport           Japan   RJAA   NRT    35.76      140.4
  Tokyo Haneda International Airport     Japan   RJTT   HND    35.55      139.8

Jupyter representation

Airports offer special display outputs in Jupyter Notebook based on their geographic footprint.

from traffic.data import airports
airports['EHAM']

Airport

Amsterdam Airport Schiphol (Netherlands) EHAM/AMS
(52.308601, 4.76389), altitude: -11

OpenStreetMap representation

The ._openstreetmap() method queries information about the airport layout from OpenStreetMap thanks to the cartes library. This data is intended to be accessed through attributes corresponding to aeroway tags, e.g. apron, taxiway, parking_position, gate, etc.

If you spot any error in data, consider contributing to OpenStreetMap.

airports["EHAM"].parking_position.head()
id_ type_ latitude longitude aeroway ref
105 2066153573 node 52.296220 4.745941 parking_position R81R
106 2066153574 node 52.294546 4.741574 parking_position R72R+
107 2066153576 node 52.294924 4.742542 parking_position R74R
108 2066153580 node 52.296600 4.746832 parking_position R82R
109 2066153581 node 52.295340 4.743634 parking_position R77R
airports["EHAM"].taxiway.head()
id_ type_ latitude longitude geometry aeroway ref name surface width
1039 8586291 way 52.315922 4.746750 LINESTRING (4.74667 52.31486, 4.74663 52.31527... taxiway NaN N5 concrete 23
1043 8586299 way 52.325770 4.740635 LINESTRING (4.73934 52.32385, 4.73941 52.32417... taxiway NaN W3 concrete 23
1044 8586300 way 52.320267 4.740608 LINESTRING (4.74188 52.31959, 4.74185 52.31981... taxiway W5 W5 concrete 23
1045 8586301 way 52.316439 4.740028 LINESTRING (4.73884 52.31843, 4.73896 52.31796... taxiway W6 W6 concrete 23
1046 8586302 way 52.311481 4.739513 LINESTRING (4.73839 52.31354, 4.73844 52.31316... taxiway W7 W7 concrete 23

Warning

The GeoDataFrame associated with the represented data is accessible through the .data attribute.

Altair representation

It is also possible to benefit from their Altair geographical representation.
Airports are associated with three parameters:
  • footprint is True by default and shows the OpenStreetMap representation;

  • runways is True by default and represents the runways in bold lines.
    Default parameters are strokeWidth=4, stroke="black" which can be overridden if a dictionary is passed in place of the boolean;
  • labels is True by default and represents the runway numbers.
    Labels are automatically rotated along the runway bearing.
    Default parameters are baseline="middle", dy=20, fontSize=18 which can be overridden if a dictionary is passed in place of the boolean;
import altair as alt

from traffic.data import airports
from traffic.data.samples import belevingsvlucht

chart = (
    alt.layer(
        airports["EHAM"].geoencode(
            footprint=True,  # True by default
            runways=True,  # default parameters
            labels=dict(fontSize=12, fontWeight=400, dy=10),  # font adjustments
        ),
        belevingsvlucht.first(minutes=1)
        .geoencode()
        .mark_line(color="steelblue"),
        belevingsvlucht.last(minutes=6)
        .geoencode()
        .mark_line(color="orangered"),
    )
    .properties(
        width=500, height=500, title="Belevingsvlucht at Amsterdam airport"
    )
    .configure_title(
        anchor="start", font="Lato", fontSize=16, fontWeight="bold"
    )
    .configure_view(stroke=None)
)

chart

Matplotlib representation

The airport representation can also be used in Matplotlib representations with a similar approach.

import matplotlib.pyplot as plt
from cartes.crs import Amersfoort  # Official projection in the Netherlands

fig, ax = plt.subplots(
    figsize=(10, 10),
    subplot_kw=dict(projection=Amersfoort())
)
airports["EHAM"].plot(
    ax,
    footprint=True,
    runways=dict(color="#f58518"),  # update default parameters
    labels=dict(fontsize=12),
)
ax.spines["geo"].set_visible(False)
../_images/airports_5_2.png

It is possible to adjust all parameters with parameters passed to the footprint (one entry per aeroway tag type), runways and labels arguments.

fig, ax = plt.subplots(
    figsize=(10, 10),
    subplot_kw=dict(projection=Amersfoort())
)
airports["EHAM"].plot(
    ax,
    footprint=dict(taxiway=dict(color="#f58518")),
    labels=dict(fontsize=12, color="crimson"),
)
ax.spines["geo"].set_visible(False)
../_images/airports_6_2.png