Visualize trajectories with Plotly
Data visualisation is integrated with the Plotly library as long as it is installed as an optional dependency.
You may install traffic with the plotly option, the full option, or install Plotly manually:
# at install time
pip install traffic[plotly] # or full
# with poetry
poetry install traffic -E plotly # or -E full
# or simply manually
pip install plotly
conda install -c conda-forge plotly
traffic provides the same interface as the plotly.express()
module on
the Flight
and Traffic
classes.
All kwargs arguments are passed directly to the corresponding method.
with
plotly.express.line_mapbox()
:from traffic.data.samples import belevingsvlucht belevingsvlucht.line_mapbox(color="callsign")
with
plotly.express.scatter_mapbox()
:from traffic.data.samples import belevingsvlucht fig = belevingsvlucht.scatter_mapbox( color="altitude", width=600, height=600, zoom=6 ) fig.update_layout(margin=dict(l=50, r=0, t=40, b=40))
as animations (perform resampling in advance and limit yourself to few points):
from traffic.data.samples import belevingsvlucht belevingsvlucht.resample("1 min").scatter_mapbox( color="vertical_rate", range_color=[-4000, 4000], animation_frame="timestamp", width=600, height=600, zoom=6, )
It is also possible to combine elements by constructing a
Scattermapbox
object:
from traffic.data import airports
import plotly.graph_objects as go
# fig = go.Figure() # if necessary, we can initiate a Figure and fill it later
fig = belevingsvlucht.resample("1 min").scatter_mapbox(
color="vertical_rate",
range_color=[-2000, 2000],
animation_frame="timestamp",
width=600,
height=600,
zoom=6,
)
fig.add_trace(
belevingsvlucht.Scattermapbox(
mode="lines",
line=dict(color="#f58518", width=1),
showlegend=False,
)
)
fig.update_layout(
width=600,
height=600,
margin=dict(l=50, r=0, t=40, b=40),
mapbox=dict(
style="carto-positron",
zoom=7,
center=airports["EHLE"].latlon_dict,
),
)
Or by combining several traces:
from traffic.data import airports
from traffic.data.samples import quickstart
subset = quickstart[["TVF22LK", "EJU53MF", "TVF51HP", "TVF78YY", "VLG8030"]]
subset = subset.resample("10s").eval()
assert subset is not None
fig = subset.scatter_mapbox(
color="callsign",
hover_data="altitude",
animation_frame="timestamp",
center=airports["LFPO"].latlon_dict,
)
fig = fig.add_traces(subset.line_mapbox(
color="callsign",
).data)
fig.update_layout(margin=dict(l=0, r=0, t=0, b=0))
fig.show()
Similar functions are available and bound with plotly.express.line_geo()
and plotly.express.scatter_geo()
:
from traffic.data import airports
from traffic.data.samples import belevingsvlucht
fig = belevingsvlucht.line_geo(
scope="europe",
projection="conic conformal",
center=airports["EHLE"].latlon_dict,
)
fig.update_layout(margin=dict(l=0, r=0, t=0, b=0))
fig.update_geos(resolution=50, fitbounds="locations")
fig