Calibration flights with SAVAN trajectories

There are 86 VOR and VOR-DME installations in France and these must all be recalibrated on a yearly basis. Recently, there has been an effort to reduce the number of calibration flights, and ad hoc trajectories have been designed to cover the 360° range around all VOR installations with a reduced number of trajectories.

As a result, every year in France, 17 trajectories are flown to cover and calibrate all the VOR installations, according to the map below.

Those trajectories are tagged as SAVAN, which stands for Système Automatique de Vérification en vol des Aides à la Navigation aérienne (Automatic system for in-flight calibration for navigational aids)

SAVAN trajectories
# Trajectories flown in 2021 are provided in the following dataset, limited
# to the coverage of the OpenSky Network.

from traffic.data.samples import savan

savan.summary(['icao24', 'callsign', 'start', 'stop']).eval()
icao24 callsign start stop
0 39b415 SAVAN01 2022-03-21 08:33:04+00:00 2022-03-21 11:50:02+00:00
1 39b415 SAVAN02 2022-03-21 14:33:59+00:00 2022-03-21 17:45:50+00:00
2 39b415 SAVAN03 2022-03-22 07:32:27+00:00 2022-03-22 10:53:27+00:00
3 39b415 SAVAN04 2022-03-22 12:53:47+00:00 2022-03-22 15:59:59+00:00
4 39b415 SAVAN05 2022-03-23 07:35:52+00:00 2022-03-23 10:41:04+00:00
5 39b415 SAVAN06 2022-03-23 12:57:59+00:00 2022-03-23 15:59:59+00:00
6 39b415 SAVAN07 2022-03-24 07:33:50+00:00 2022-03-24 10:38:08+00:00
7 39b415 SAVAN08 2022-03-24 13:14:08+00:00 2022-03-24 16:32:06+00:00
8 39b415 SAVAN09 2022-03-25 07:34:52+00:00 2022-03-25 10:38:52+00:00
9 39b415 SAVAN10 2022-03-25 13:03:05+00:00 2022-03-25 16:45:30+00:00
10 39b415 SAVAN11 2022-03-28 06:35:38+00:00 2022-03-28 10:17:46+00:00
11 39b415 SAVAN12 2022-03-28 12:12:29+00:00 2022-03-28 15:18:29+00:00
12 39b415 SAVAN13 2022-03-29 06:39:30+00:00 2022-03-29 09:55:54+00:00
13 39b415 SAVAN14 2022-03-29 12:01:33+00:00 2022-03-29 15:29:04+00:00
14 39b415 SAVAN15 2022-04-15 06:31:37+00:00 2022-04-15 09:20:59+00:00
15 39b415 SAVAN16 2022-04-15 12:04:11+00:00 2022-04-15 15:21:06+00:00
16 39b415 SAVAN17 2022-03-16 09:03:05+00:00 2022-03-16 09:47:50+00:00
17 39b415 SAVAN17 2022-03-16 10:14:30+00:00 2022-03-16 11:32:52+00:00

Trajectories can be considered individually:

savan['SAVAN01'].map_leaflet(zoom=5)

But it makes more sense to plot them all together. The following cells detail how we come to the full map below:

savan['SAVAN01'].simplify(1e3).geoencode()
import altair as alt

alt.layer(
    savan['SAVAN01'].simplify(1e3).geoencode(),
    savan['SAVAN02'].simplify(1e3).geoencode()
)
alt.layer(
    savan['SAVAN01'].simplify(1e3).geoencode().encode(alt.Color('callsign')),
    savan['SAVAN02'].simplify(1e3).geoencode().encode(alt.Color('callsign'))
)
alt.layer(
    # the * operator serves as list unpacking
    *(flight.simplify(1e3).geoencode().encode(alt.Color('callsign')) for flight in savan)
)

The cartes package helps providing layouts for better maps.

from cartes.atlas import france
from cartes.crs import Lambert93

chart = (
   alt.layer(
      alt.Chart(france.topo_feature)
      .mark_geoshape(fill="None", stroke="#bab0ac")
      .project(**Lambert93()),
      # the * operator serves as list unpacking
      *(flight.simplify(1e3).geoencode().encode(alt.Color('callsign')) for flight in savan)
   )
   .properties(width=600, height=600)
   .configure_view(stroke=None)
   .configure_legend(orient='bottom', columns=5)
)
chart

The next step for a proper visualisation is to include the VOR locations on the map. A naive approach would be to use the bounding box of “France métropolitaine” (the adjective helps excluding overseas territories with the OpenStreetMap Nominatim service.)

from traffic.data import navaids

vors = navaids.extent('France métropolitaine').query('type == "VOR"')
vors
name type latitude longitude altitude frequency magnetic_variation description
272141 ABB VOR 50.135139 1.854694 220.0 108.45 -1.0 ABBEVILLE VOR-DME
272179 AFI VOR 50.907778 4.138889 291.0 114.90 0.0 AFFLIGEM VOR-DME
272184 AGN VOR 43.888028 0.872861 896.0 114.80 0.0 AGEN VOR-DME
272196 AJO VOR 41.770528 8.774667 2142.0 114.80 2.0 AJACCIO VOR-DME
272210 ALB VOR 44.048167 8.127611 144.0 116.95 1.0 ALBENGA VOR-DME
... ... ... ... ... ... ... ... ...
275742 WYP VOR 51.048353 7.279997 0.0 109.60 1.0 WIPPER VOR
275921 ZAR VOR 41.657889 -1.030861 886.0 113.00 0.0 ZARAGOZA VOR-DME
275942 ZMR VOR 41.530194 -5.639694 2067.0 117.10 -2.0 ZAMORA VOR-DME
275948 ZUE VOR 47.592167 8.817667 1730.0 110.05 2.0 ZURICH EAST VOR-DME
275953 ZWN VOR 49.229072 7.417892 1164.0 114.80 2.0 ZWEIBRUECKEN VOR-DME

206 rows × 8 columns

For the time being, the filtering based on a polygon is not provided by the library, but it is not very difficult to code it directly.

from cartes.osm import Nominatim

france_shape = Nominatim.search("France métropolitaine").shape
france_shape
../_images/savan_8_0.svg
from shapely.geometry import Point
from traffic.data.basic.navaid import Navaids

vors = navaids.extent('France métropolitaine').query('type == "VOR"')
vors_fr = Navaids(
 vors.data.loc[
     list(france_shape.contains(Point(x.longitude, x.latitude)) for x in vors)
 ]
)
vors_fr
name type latitude longitude altitude frequency magnetic_variation description
272141 ABB VOR 50.135139 1.854694 220.0 108.45 -1.0 ABBEVILLE VOR-DME
272184 AGN VOR 43.888028 0.872861 896.0 114.80 0.0 AGEN VOR-DME
272196 AJO VOR 41.770528 8.774667 2142.0 114.80 2.0 AJACCIO VOR-DME
272230 AMB VOR 47.428917 1.064444 387.0 113.70 -2.0 AMBOISE VOR-DME
272246 ANG VOR 47.536861 -0.851833 304.0 113.00 -3.0 ANGERS VOR
... ... ... ... ... ... ... ... ...
275341 TIS VOR 45.881833 3.553583 2000.0 117.50 1.0 THIERS VOR-DME
275389 TOU VOR 43.680833 1.309806 574.0 117.70 0.0 TOULOUSE BLAGNAC VOR-DME
275424 TRO VOR 48.251222 3.963139 0.0 116.00 1.0 TROYES BARBEREY VOR
275439 TSU VOR 48.753722 2.102361 547.0 108.25 0.0 TOUSSUS LE NOBLE VOR
275645 VNE VOR 45.556444 4.883417 0.0 108.20 1.0 VIENNE VOR

86 rows × 8 columns

Here comes a better map now:

base_vor = alt.Chart(vors_fr.data).mark_point().encode(
   alt.Longitude('longitude'), alt.Latitude('latitude')
)

map_chart = (
   alt.layer(
      alt.Chart(france.topo_feature)
      .mark_geoshape(fill="None", stroke="#bab0ac"),
      # the * operator serves as list unpacking
      *(flight.simplify(1e3).geoencode().encode(alt.Color('callsign')) for flight in savan),
      base_vor,
      base_vor.mark_text(dx=20).encode(alt.Text('name'))
   )
   .project(**Lambert93())
   .properties(width=600, height=600)
   .configure_view(stroke=None)
   .configure_legend(orient='bottom', columns=5)
)
map_chart

A way to dig into how VOR installations are well covered on 360 degrees by SAVAN trajectories is to compute for each VOR and for each trajectory, which legs cover which bearing angle.

from traffic.core import Traffic

coverage = Traffic.from_flights(
    savan.assign(vor=vor.name)
    .iterate_lazy()  # optional, but this line makes it clear we loop over flights
    .phases()  # compute flight phases
    .query('phase == "LEVEL" and altitude > 20000')
    .resample("15s")  # reduce the number of points
    .distance(vor)
    .bearing(vor)
    .query("20 < distance < 100")  # only keep legs within coverage
    .longer_than("10 min")
    .eval()
    # focus roughly on Corsica, but we could go for the whole set of VORs
    for vor in vors_fr.query("latitude < 47 and longitude > 7")
)
coverage.data[['callsign', 'latitude', 'longitude', 'altitude', 'distance', 'bearing', 'vor']]
callsign latitude longitude altitude distance bearing vor
222 SAVAN11 43.425339 8.963439 28000.0 99.609111 184.881527 AJO
223 SAVAN11 43.405746 8.961139 28000.0 98.429483 184.879834 AJO
224 SAVAN11 43.386825 8.958893 28000.0 97.290168 184.877488 AJO
225 SAVAN11 43.366668 8.956539 28000.0 96.076578 184.875962 AJO
226 SAVAN11 43.346977 8.954184 28000.0 94.890814 184.872965 AJO
... ... ... ... ... ... ... ...
204 SAVAN17 42.461746 8.48363 22000.0 95.301403 325.890187 NIZ
205 SAVAN17 42.45471 8.488727 22000.0 95.777793 325.923071 NIZ
206 SAVAN17 42.441349 8.501374 22000.0 96.756319 325.921902 NIZ
207 SAVAN17 42.424118 8.525765 22000.0 98.220072 325.752478 NIZ
208 SAVAN17 42.415699 8.541678 22000.0 99.035897 325.589422 NIZ

4150 rows × 7 columns

We can then produce plots to check for the coverage, here limited on South-eastern France and Corsica:

chart = (
    alt.Chart(coverage.data)
    .mark_circle()
    .encode(
        alt.X(
            "bearing",
            title="Bearing angle in degree",
            scale=alt.Scale(domain=(0, 360), nice=False),
        ),
        alt.Y("vor", title="VOR name"),
    )
    .properties(width=500)
    .configure_axisY(titleY=-10, titleAnchor="start", titleAngle=0)
    .configure_axis(titleFontSize=14, labelFontSize=12)
)
chart

Some VOR are not fully covered on this map, and we can look into more details in the following map: a part of trajectory for SAVAN17 was out of coverage of the OpenSky Network.

map_chart.project(**(dict(Lambert93()) | dict(scale=6000, rotate=(-8, -43, 0))))
chart = (
    alt.Chart(coverage.data)
    .mark_circle()
    .encode(
        alt.X(
            "bearing",
            title="Bearing angle in degree",
            scale=alt.Scale(domain=(0, 360), nice=False),
        ),
        alt.Y("callsign", title=None),
        alt.Row("vor", title="VOR name"),
        alt.Color("callsign", legend=None),
    )
    .transform_filter("datum.vor == 'AJO' | datum.vor == 'BTA' | datum.vor == 'FGI'")
    .properties(width=500)
    .resolve_scale(y="independent")
    .configure_header(
        labelOrient="right",
        labelAngle=0,
        labelFontSize=14,
        titleOrient="right",
        titleFontSize=14,
    )
    .configure_axis(titleFontSize=14, labelFontSize=12)
)
chart